Специальная теория относительности
Согласно теории относительности, при увеличении кинетической энергии частицы скорость частицы хотя и увеличивается, но всегда остается меньше скорости света с, в то время как неограниченно увеличивается наблюдаемая масса частицы. Именно этот эффект и имеет место в больших ускорителях. Это повышает стоимость и требует изменения устройства машины. При высоких скоростях масса протона возрастает; из-за этого мы вынуждены тратить средства на создание схем, «модулирующих частоту» генератора циклотрона. В больших кольцевых ускорителях ионы приобретают наибольшую энергию на поздних стадиях «ускорения», когда они описывают полуокружности почти за одно и то же время, так как их скорость очень близка к с и почти не меняется при дальнейшем ускорении; это обстоятельство должно быть учтено при модуляции частоты генератора. Релятивистское увеличение массы выведенных из циклотрона протонов должно проявляться при их столкновениях с мишенями.
Наличие предельной скорости в релятивистской механике даже упрощает конструкцию электронных ускорителей: уже на первых этапах ускорения скорость электронов так близка к с, что последующее движение электронов происходит по круговым орбитам постоянного радиуса и за одно и то же время Т = 2πR/с. Правда, с каждым оборотом электрона увеличивается его кинетическая энергия и, следовательно, масса; поэтому, чтобы удержать его на данной орбите, по определенному закону должно возрастать и магнитное поле. Таким образом, релятивистская механика и опыт полностью согласуются.
Необходимость еще больших энергий
Частицы еще больших энергий являются очень ценным инструментом исследования ядер. При столкновениях с ядрами они могли бы вызвать новые ядерные превращения. Физики заинтересовались, можно ли при помощи частиц достаточной энергии получить новые виды материи (т. е. новые виды элементарных частиц). Известно, что фотон энергии 1 Мэв и больше может «родить» пару электронов с отрицательным и положительным зарядами. Какова должна быть энергия, чтобы «родилось» ядро атома водорода, которое примерно в 2000 раз тяжелее электрона? Казалось бы, в 2000 раз больше энергии, необходимой для возникновения электрона, т. е. 2000 Мэв. Однако из простой теории столкновений следует, что этой энергии недостаточно. Для рождения «протонной пары», т. е. протона и «антипротона» — таинственного и давно предсказываемого отрицательно заряженного партнера протона, который был открыт совсем недавно, — потребуется значительно большая энергия, примерно 5000 Мэв. Такая «пара» возникает дополнительно к исходной налетающей бомбардирующей частице, т. е. является будто бы «материей ниоткуда»; на самом деле масса пары возникла за счет кинетической энергии налетающей частицы.
При столкновениях ионов с ядрами рождаются и другие элементарные частицы. Это мезоны, обладающие различными массами, промежуточными между массой электрона и массой протона и электрическими зарядами — е, 0, е. Как оказалось, эти странные короткоживущие частицы играют важную роль, связывая ядра воедино, и физики-ядерщики принялись тщательно изучать их свойства. Вместо того чтобы ждать, пока несколько таких мезонов появится в космических лучах, мы можем сами производить их, бомбардируя различные мишени ионами высоких энергий из ускорителей. Но для создания плотных потоков мезонов необходимы ионы с энергией от 500 до 1000 Мэв или даже больше. Таким образом, в этой новой и очень важной области появляется новая единица энергии — Бэв (биллион электронвольт).
Кольцевые ускорителя
Чтобы построить циклотрон, ускоряющий ионы до энергии в несколько Бэв, необходимо затратить слишком много металла на магниты. А нельзя ли сделать так, чтобы магнит находился только вокруг наибольшей устойчивой орбиты, т. е. чтобы посреди магнита было большое, диаметром в десятки метров, отверстие, а камера имела форму бублика? Можно, такова конструкция кольцевых ускорителей. Некоторые из них уже построены и действуют, причем получили специальные названия: «космотрон», «бэватрон» и т. д. Их гигантские кольцевые магниты собраны из многих С-образных тонких секций. Между «челюстями» магнита помещена вакуумная камера в форме бублика. Один дуант расположен внутри короткой экранированной «дрейфовой трубы», а другим является вся оставшаяся часть бублика. Ионы ускоряются переменным электрическим полем, создаваемым в зазорах у концов дрейфовой трубы. Частицы, которые должны ускоряться такими машинами, ионизуются и предварительно ускоряются до энергий в несколько Мэв малыми ускорителями, типа генератора Ван-де-Граафа. Затем они инжектируются в бубликообразную камеру и вращаются внутри нее, приобретая после каждого оборота дополнительную энергию за счет электрического поля, создаваемого высокочастотным генератором. Поскольку теперь область движения ионов ограничена тороидальной, т. е. в виде бублика, камерой, при увеличении энергии ионы не могут переходить на окружности большого радиуса, как в циклотроне. Вместо этого с ростом энергии ионов должно меняться магнитное поле, удерживающее их на данной орбите. Вначале, когда ионы только инжектируются в камеру и, следовательно, их энергия мала, магнитное поле тоже мало. По мере увеличения скорости частиц должно увеличиваться и магнитное поле, чтобы ионы постоянно двигались по одной и той же орбите. После миллиона (или около этого) оборотов внутри камеры энергия ионов достигает заданного максимального значения; отклоняющая система выводит ионы для бомбардировки мишеней. Затем магнитное поле уменьшается до первоначального значения, ускоритель готов принять следующую порцию инжектируемых ионов.