Фиг. 121. Радиоактивные превращения.
Изменения атомного номера Z ведут к такому же изменению в числе внешних электронов нейтрального атома и тем самым к изменению его химических свойств, которые определяются внешними электронами. Число же и распределение этих электронов определяются зарядом ядра Ze, и мы бессильны превратить один химический элемент в другой, не имея возможности изменить заряд ядра. Мечта алхимиков о превращении свинца (Z = 82) в золото (Z = 79) осуществилась бы, если бы можно было отобрать у каждого ядра свинца по три +е заряда. При радиоактивном распаде элементов заряд их меняется. Нельзя ли вызвать или хотя бы повлиять на такие изменения? Первые эксперименты показали: нет, и теперь ясно, что надеяться на это было безнадежно, пока не стали доступны для бомбардировки снаряды с очень высокой энергией. Масса электронов очень мала: они, словно кометы, легко заворачиваются ядром. Альфа-частицы несут «++» заряд и поэтому отталкиваются ядром. Они вылетают из радиоактивного ядра с кинетической энергией в несколько миллионов электронвольт. Поэтому для их возвращения назад нужна такая же по величине энергия. (Бесполезно использовать для бомбардировки нейтральный атом: уже на ранней стадии сближения с ядром его электроны отрывались бы от него и ядро отталкивалось бы подобно α-частице.) Однако некие надежды возлагались на бомбардировку быстрыми альфа-частицами легких атомов с малым атомным номером, т. е. с малым зарядом ядра. Они-то и привели к первым успехам в искусственном превращении элементов.
Искусственный распад. Превращения, осуществленные человеком
Спустя четверть века после открытия радиоактивности Резерфорду удалось сокрушить ядра нескольких атомов, облучая их быстрыми альфа-частицами. Альфа-частицы, выпущенные из радиоактивного источника, пронизывали газообразный азот. В конце своего пробега альфа-частицы иногда выбивали вперед более легкие частицы. Выбитые частицы закручивались с помощью магнитного поля, и тем самым можно было убедиться, что это протоны Н. Несмотря на то что эти события были редкими, они были сфотографированы. Около четверти миллиона треков в камере Вильсона было снято на кинопленку и обнаружено семь таких событий (фиг. 122). На снимках была видна отскочившая легкая частица, несомненно протон, и короткий трек атома отдачи, но исходная α-частица на них уже видна не была. Измерения углов и длины треков показали, что при столкновении сохранялся лишь момент количества движения, но не кинетическая энергия.
Фиг. 122. Фотоснимки в камере Вильсона.
Запишем теперь это следующим образом:
...альфа-частица (ядро Не) СТАЛКИВАЕТСЯ с ядром атома азота ИСПУСКАЕТСЯ протон (ядро Н) получается новое ядро???
(заряд = +2е) (заряд = + 7е) (заряд = +е) (заряд = 7е + 2e — 1e)
(масса = 4 маcсы протона) (масса = 14) (масса = 1) (масса = 14 + 4–1)
Таким образом, новое ядро должно иметь заряд +8е, характеризующий кислород, и массу 17, до некоторой степени необычную, но не такую уж неожиданную для кислорода. (С помощью масс-спектрографа было показано, что в обычном кислороде помимо атомов О всегда присутствуют более тяжелые атомы О.)
Фиг. 123. Позитрон.
С тех пор как появилось сообщение Резерфорда, осуществлено много таких «ядерных» реакций, сначала путем бомбардировки существующими в природе снарядами (α-частицами), а затем более мощными снарядами — протонами, ускоренными на больших машинах, и, наконец, еще более эффективными снарядами — лишенными заряда нейтронами. Эти ядерные превращения составляют обширную область ядерной «химии».
Фиг. 124. Образование пар. Рождение вещества.
Фиг. 125. Распад ядра, вызванный нейтроном.
Ядерная «химия»
Для ядерных реакций используется теперь принятая в химии запись уравнений. Например, ядро атома радия обозначается его химическим символом Ra, а атомный номер, т. е. заряд ядра, равный +88 зарядам электрона, и масса атома, равная 226 (в шкале, в которой Н ~= 1, O = 16), записываются так: Ra. Распад атома радия с испусканием альфа-частицы и превращением его в атом радона записывается следующим образом:
Ra = Rn + Не
Открытое Резерфордом превращение азота записывается следующим образом:
Не + N = O + H.
Первая «большая машина» была не очень большой: она ускоряла протоны только до энергии 150 000 эв. Но уже эти протоны могли проникать в атомы литиевой мишени и раскалывать ее ядра. Фотоснимки в камере Вильсона подтвердили предположение о том, что «протон, попадая в атом лития, рождает две альфа-частицы высокой энергии»:
H + Li = He + He.
Протоны налетают с энергией около 150 000 эв. Каждая родившаяся альфа-частица имеет энергию 8 500 000 эв, т. е. обе частицы — 17 Мэв. Следовательно, можно сказать, что
H + Li + (0,15) Мэв = Не + Не + (17) Мэв,
где Мэв означает миллион электронвольт. Альфа-частицы рождаются с кинетической энергией, гораздо большей, чем приносит с собой протон. Когда они сталкиваются с молекулами воздуха, то теряют свою энергию на ионизацию атомов, а также время от времени на столкновения с ядрами. Эта энергия в основном переходит в тепло. Сравните получающиеся количества тепла — 17 000 000 эв от одного атома лития с 4 эв, приходящимися на один атом сгоревшего угля.