Физика для любознательных. Том 3. Электричество и - Страница 147


К оглавлению

147

Что касается наших технических возможностей, то синтез ядер обычного водорода требует слишком высоких температур — или же слишком большого времени, за которое успевали бы происходить случайные столкновения необычайной силы, чтобы его можно было использовать. Ядра тяжелого водорода, дейтроны, легче синтезировать, но это также задача исключительной трудности. Лучше использовать тритоны, еще более тяжелые ядра водорода, — для соединения их с ядрами водорода или дейтерия. Однако тритий (сверхтяжелый водород) нужно получать в реакторе, и он дорого стоит.

Нельзя ли использовать еще более тяжелые атомы? Следующими по списку идут изотопы лития, которые могли бы служить материалом для компактной термоядерной бомбы. Вероятно, у такой бомбы запалом должна служить бомба из делящегося вещества. Проблема использования синтеза ядер в мирных целях, например для производства электрической энергии, упирается в очень трудную проблему удержания реакции. Газ должен быть раскален, скажем, до 50 000 000 °C, и любая твердая оболочка, соприкоснувшись с ним, обратится в пар. Если к тому же при синтезе выделяется полезное тепло, то задача удержания реакции еще больше усложняется. Однако можно надеяться удержать реагирующие вещества с помощью электромагнитного поля. Ведь можно же подвешивать в воздухе магнит с помощью других магнитов, хотя такое равновесное положение и является неустойчивым. Если пропускать ток достаточно большой силы через газ, то образуются потоки электронов и положительных ионов, движущихся навстречу друг другу. Под действием магнитного поля, которое окружает ток, такая колонна движущихся зарядов будет сжиматься в узкий шнур. В этом заключается так называемый пинч-эффект. Пинч-эффект и силы, создаваемые внешними магнитными полями, меняющимися по определенному закону, можно использовать для удержания плазмы — смеси быстро движущихся ядер и электронов в «магнитной бутылке», где происходит реакция синтеза.

Глава 44. Дальнейшая теория и эксперимент. Физика сегодня

«Каждая новая теория… полагает, что она наконец является той счастливой теорией, которая дает «правильный» ответ… Если мы будем знать, что логика, математика, физическая теория являются лишь нашими изобретениями для формулировки в компактной и доступной для обращения форме того, что мы уже знаем, и, подобно всем изобретениям, не достигают полного успеха в том, для чего они были предназначены, и еще меньшего успеха вне области своего первоначального предназначения, и что наша единственная надежда проникнуть с помощью этих изобретений в нечто совсем неизвестное основана на прошлом опыте, почему же иногда мы были настолько удачливы, что смогли продвинуться хоть на короткое расстояние за счет приобретенной инерции?»

П. У. Бриджмен, 1936 «Природа физической теории»

«В полночном молчании времени снов,

Когда вы освобождаете свое воображение…»

Роберт Браунинг

...

[Эта последняя глава не столько заканчивает курс, сколько связывает его с будущими самостоятельными исследованиями и чтением литературы. Ее следует читать на досуге, для «души». Она не может полностью снабдить вас всеми современными знаниями в окончательном виде. Вместо этого у вас останутся сомнения и обрывки незаконченного знания — а этим характеризуются границы любой развивающейся науки.]


КЛАССИЧЕСКАЯ ФИЗИКА

К началу этого века на протяжении жизни примерно сотни (или около этого) поколений человечество создало огромный каркас физической науки:

...

Статика блоков и тросов, колонн, мостов… правила равновесия

Динамика движущихся тел, сила и масса, законы движения, энергия и импульс

Гидростатика насосов, давление воздуха, условия плавучести судов и их остойчивости…, законы давления в жидкости, закон Бойля…

Гидродинамика потоков жидкости как при ламинарном, так и при вихревом движении

ОБЪЕДИНЕНЫ ЗАКОНАМИ НЬЮТОНА


Электромагнетизм зарядов, токов, магнитов…, полей…

Оптика световых лучей, движущихся по прямой и отклоняющихся под действием линз с образованием изображения, волновое поведение при дифракции и интерференции, электромагнитная теория света

ОБЪЕДИНЕНЫ ЗАКОНАМИ (УРАВНЕНИЯМИ) МАКСВЕЛЛА


Акустика: физика музыкальных инструментов и звуковые волны

Теплота: термометрия и калориметрия, теплота как форма энергии

Свойства вещества: упругость, трение твердых тел и жидкостей, поверхностное натяжение и т. д

ОБЪЕДИНЕНЫ С МЕХАНИКОЙ


Кинетическая теория газов и рассмотрение теплоты как молекулярного движения (движения молекул)

Поведение атомов и молекул в кристаллических структурах, при поверхностном натяжении, упругость, диффузия

МЕХАНИКА, ПРИМЕНЕННАЯ К СОВОКУПНОСТИ НЕВИДИМЫХ МАЛЫХ ЧАСТИЦ


∙ Термодинамика: соотношение между теплотой, работой и материей

РАССМАТРИВАЛИСЬ КАК ВСЕОБЩИЕ ПРАВИЛА


Рядом с физикой в огромную науку о структуре и свойствах молекул развилась химия:

Неорганическая Химия: химические реакции и их характеристики, интерпретируемые в терминах элементов, соединений, атомов и молекул

Органическая Химия: изучение углеродных соединений, содержащихся в живой материи: почти бесконечное семейство молекул — исследованных, внесенных в каталоги, наглядно изображенных «структурными формулами» и даже синтезированных из элементов, — заключенное в пределах от простой молекулы СО до огромных и сложных протеиновых молекул.

147