Фиг. 143. Метод сложения векторов и доказательство выталкивающего действия магнитного поля на проводник с током.
В некоторой произвольной точке А нарисуем стрелки-векторы, отмечающие напряженности обоих полей, одну в направлении однородного магнитного поля, а другую по касательной к окружности. Сложим эти векторы и обозначим результирующее направление короткой стрелкой, выходящей из А. В другой точке В однородное поле не меняется, а поле, создаваемое током, ослабевает. Сложим опять их векторы и снова обозначим результирующее направление короткой стрелкой, исходящей из В (чертеж г). Нанесем множество таких стрелок по всей диаграмме. Они покажут нам направление результирующего поля, которое мы хотели найти. Начертим силовые линии этого поля, проходящие через стрелки (чертеж д).
Здравый смысл подсказывает нам следующие очевидные выводы:
а) Вблизи проводника преобладает магнитное поле, создаваемое током, и силовые линии суммарного поля практически совпадают с окружностями, в центре которых находится проводник.
б) На больших расстояниях от проводника магнитное поле тока пренебрежимо мало, и силовые линии результирующего поля совпадают с прямыми силовыми линиями однородного магнитного поля.
в) Имеется некоторая нейтральная точка х, где суммарное поле равно нулю. В этой точке оба поля полностью компенсируют друг друга.
Чтобы правильно начертить конфигурацию результирующего магнитного поля, нужно запастись терпением. К счастью, карту поля можно получить, пользуясь косвенными геометрическими методами (основанными на математическом соотношении, которое обычно записывается
Если, следуя Фарадею, мы будем видеть в магнитных силовых линиях графическое изображение реальных сил, которые действуют на магниты и проводники с током, то придем к заключению, что результирующее магнитное поле, изображенное на последнем рисунке, будет тянуть проводник вниз. Таким образом, здесь мы имеем дело с поперечной силой, перпендикулярной как проводнику, так и направлению однородного магнитного поля. Разглядывая эти картинки, мы можем сказать, что результирующее поле действует наподобие катапульты или рогатки (фиг. 144).
Фиг. 144. Опыт, демонстрирующий конфигурацию магнитных силовых линий при взаимодействии токов.
Поперечная (катапультирующая) сила
Действует ли на самом деле эта сила непосредственно на проводник с током, проходящий поперек магнитного поля? Проверьте это на опыте, используя гибкий провод, электрическую батарею и подковообразный магнит. Включайте электрический ток при различных положениях проводника в сильном однородном поле между полюсами магнита. Если ток достаточно велик, то, как мы и ожидали, возникает поперечная сила, смещающая провод в сторону (см. опыт 1 гл. 41). Но для электрического тока не обязательно нужен проводник; он может быть и просто пучком заряженных частиц, например электронов. Такой электронный луч также отклоняется магнитным полем, — этот эффект, широко используемый в практических целях, мы рассмотрим в гл. 37. (Чтобы эффект был сильнее, магнитное поле должно быть перпендикулярно электрическому току или пучку электронов, так как продольная компонента поля не оказывает на них никакого влияния.) Испытайте действие намагниченного стержня на электроннолучевую трубку. Результат этого опыта очень напоминает тот, о котором мы говорили в гл. 9, однако теперь направление поперечной силы оказалось противоположным направлению силы Бернулли.
Попытки получить отдельный магнитный полюс. Начала теории магнетизма
Вернемся к стальным магнитам и проведем еще один опыт. До сих пор в каждом магните мы всегда находили два полюса. Спросим себя, можно ли отделить северный магнитный полюс от южного наподобие того, как мы поступали с электрическими зарядами. Попытаемся разрезать магнит пополам. Для этого намагнитим кусок стальной проволоки или пружину от часов. Убедимся с помощью железных опилок, что на концах магнита образовались полюсы, а небольшой компас поможет нам определить, где северный полюс, а где южный. Затем с помощью ненамагниченных ножниц разрежем магнит посередине и исследуем полюсы каждой половинки. Как бы в насмешку над нашими попытками, в местах разреза возникают новые полюсы. Мы получили просто-напросто два новых магнита.
Это необычное свойство магнитов тут же ставит перед нами два новых вопроса:
1) Сколь малые магнитики можно получить, разрезая магнит на все более мелкие части?
2) Почему в месте разреза снова возникают полюсы?
Попытки разобраться в этих вопросах привели к созданию теории магнетизма, одинаково хорошо объясняющей все магнитные явления — от обычных свойств магнитов до важнейших деталей магнитной структуры атомов.
Комментируя распространенную шутку о том, что «путь развития науки заключается в наблюдении фактов и пренебрежении теориями», Моррис Коэн писал.
...«Если, однако, мы проследим за развитием какого-либо подлинно научного исследования, то станет очевидным, что без определенного ведущего принципа, без научной идеи, гипотезы или теории мы даже не сможем понять, какие факты нам необходимы. Полностью неверно также и то, что мы в состоянии раскрыть природу вещей путем одного только наблюдения. Если бы это было так, то развитие науки оказалось бы гораздо более легким, и занятие ею было бы по силам каждому. Однако в действительности в научном исследовании порой приходится применять очень трудоемкие и искусные методы, чтобы исключить то, что кажется основным для обычного наблюдателя… Теории — это отправные точки или вершины, с которых можно увидеть вещи в их взаимосвязи. Они, как указал Ченси Райт, глаза и уши ученого, необходимые ему, чтобы предвидеть и открывать явления, до поры до времени скрытые».