Физика для любознательных. Том 3. Электричество и - Страница 74


К оглавлению

74

Ионы, электроны и периодическая система химических элементов

Забегая вперед в область физики, занимающейся моделями атома, набросаем здесь схему простой теории атома. Мы представляем атомы в виде облака электронов, окружающего центральное ядро, с которым внутренние электроны очень сильно, а внешние более слабо связаны электрическими силами. Атомы элементов первого столбца периодической системы (литий, натрий и т. д.) имеют один слабо связанный электрон, который с легкостью переходит к другим атомам. Этот электрон бóльшую часть времени проводит вне компактной группы внутренних электронов, сконцентрированных ближе к ядру. Именно такая компактная группа окружает ядро атомов элементов, принадлежащих нулевому столбцу. Там нет электронов, которые можно легко вырвать из атома, а следовательно, нет и способности образовывать ионы, нет и химических соединений. Элементы первого столбца охотно отдают свой единственный внешний электрон, и их атомы участвуют в химических реакциях в виде однократно заряженных ионов. Если эти элементы находятся в твердом состоянии и к ним прикладывается электрическое поле, то такие электроны практически беспрепятственно переходят от атома к атому, создавая электрический ток. Поэтому можно ожидать, что элементы первой группы будут хорошими проводниками. И действительно, все элементы первого столбца — металлы, очень хорошие проводники электричества.

Атомы элементов второго столбца имеют по два внешних электрона, не входящих во внутреннюю стабильную группу, теряя которые, они становятся ионами . Эти элементы также являются металлами и хорошо проводят электрический ток.

Теперь напрашивается новое объяснение столбцов периодической системы. Номер столбца отвечает валентности, т. е. числу слабо связанных внешних электронов. Посмотрев на алюминий, находящийся в третьем столбце таблицы и имеющий ионы Аl, мы можем ожидать, что он имеет три внешних электрона.

Обращаясь к седьмому столбцу, мы не будем говорить, что входящие в него элементы обладают семью слабосвязанными внешними электронами, а скажем, что здесь имеется почти замкнутая инертная группа, похожая на те, которые окружают атомы элементов нулевого столбца. И в самом деле, характер электронного облака атомов элементов седьмого столбца таков, что требуется еще только один электрон, чтобы образовалась замкнутая группа. Поэтому не нужно удивляться, что фтор, хлор и другие элементы этого семейства с готовностью отбирают электрон (у натрия, воды и почти у всех других веществ), образуя отрицательные ионы. Откуда мы знаем, что для образования замкнутой группы достаточно одного добавочного электрона? Чтобы понять это, взгляните на нулевой столбец, который находится в преддверии седьмого столбца.

Все эти причины заставляют нас рассматривать валентность как меру сродства атомов к электронам. Например, электрон атома натрия захватывается хлором, и образуется ионная молекула Na—Cl. Оба эти иона, если забыть об их избыточном электрическом заряде, очень похожи на атом инертного газа. Именно поэтому мы и наблюдаем сильное притяжение, придающее кристаллам прочность, сильные ионные свойства, но не обнаруживаем тенденции к повторному обмену электронами, который мог бы дать новые химические свойства.


...

Задача

Что, по вашему мнению, происходит с атомами кальция и хлора при соединении их в хлористый кальций, если основываться на представлении об образовании устойчивых электронных групп при обмене атомов электронами?


Притяжение между ионами — это не единственная форма химической связи. В некоторых соединениях такая связь осуществляется за счет того, что несколько атомов совместно владеют одним или более электронами, находящимися между ними. Чтобы объяснить происхождение валентности такого типа и предсказать саму ее возможность, необходимо привлечь современную квантовую теорию, или «волновую механику».

«Физическая» связь между отдельными молекулами тоже возникает благодаря смещению электронов одной молекулы под действием электрического поля другой, в результате чего заряды молекул «раздвигаются» [+… —] и молекулы поляризуются. Затем они поворачиваются и сближаются таким образом, что заряд одной молекулы оказывается вблизи заряда противоположного знака другой молекулы, а возникающие при этом силы притяжения обеспечивают устойчивость связи. Механизм такого взаимодействия также описывается квантовой теорией.


Молекулы воды

При растворении солей в воде ионы, по-видимому, образуются очень охотно, но нет даже намека на то, что они возникают в таких растворителях, как, скажем, бензол. Мы считаем, что сама молекула воды, которая может образовать ионы Н и ОН, электрически поляризована и имеет на одном конце заряд «-+-», а на другом «—».

Известно, что водяные пары легче конденсируются на электрически заряженных частицах. Особенно легко капли тумана образуются на ионах газов (см. гл. 39, где описано, как это свойство используется в камерах Вильсона для исследования атомных частиц). Известно также, что если поместить воду между пластинами электрического конденсатора, то его емкость, т. е. способность накапливать электрический заряд от присоединенной к нему батареи, увеличивается в 81 раз. Это происходит потому, что поляризованные молекулы воды поворачиваются в электрическом поле, частично компенсируя его своим собственным полем. При растворении соли в воде молекулы последней помогают образованию ионов, скапливаясь вокруг них таким образом, что к иону направлены заряды противоположного ему знака. Каждый ион собирает вокруг себя целую гроздь молекул воды, которая тащится за ионом, сильно затрудняя его движение. Вот почему ионы так медленно перемещаются в электрическом поле.

74