Физика для любознательных. Том 3. Электричество и - Страница 152


К оглавлению

152



Фиг. 175. Излучение энергии из «абсолютно черного» излучателя при различных температурах. (экспериментальные факты).


Суть предположения Планка состоит в том, что энергия излучения упакована маленькими (атомных масштабов) порциями, так называемыми «квантами». Размер квантов не одинаков для разных цветов — они крошечные у инфракрасного, маленькие у зеленого и большие у ультрафиолетового излучения. Как повлияет такая упаковка на предсказываемый спектр излучения? Предположим, радиация выходит из дырки в печке, и рассмотрим обмен энергией между излучением и стенками внутри печки. Квантовые ограничения будут наиболее заметны для ультрафиолетового конца спектра, где кванты велики. Инфракрасный свет будет непрерывно изливаться обильным потоком крошечных квантов, слишком крошечных, хотя и многочисленных, чтобы повлиять на обмен энергией. Но ультрафиолетовый свет должен либо излучаться большими квантами, либо вовсе не излучаться. Голубое, фиолетовое и, особенно, ультрафиолетовое излучение будет существенно подавлено, и тем самым будет предотвращена ультрафиолетовая катастрофа. Более детально правило Планка гласит:

Излучение упаковано порциями («кванты»),

В век атомов вещества, атомов электричества — это естественное предположение, которое следует попытаться проверить.

Каждый квант состоит из излучения единственной частоты (и, следовательно, единственной длины волны, т. е. из света «одного цвета» — из монохроматического излучения).

Правило, определяющее размеры квантов:

ЭНЕРГИЯ КВАНТА ПРОПОРЦИОНАЛЬНА ЧАСТОТЕ ИЗЛУЧЕНИЯ В ДАННОМ КВАНТЕ, ИЛИ ЭНЕРГИЯ = h∙ЧАСТОТА, ИЛИ E = hv (и, следовательно, Е ~ 1/λ), где h — универсальная постоянная (теперь ее называют постоянной Планка), a v, как обычно, частота излучения.

Исходя из этого, Планк предсказал распределение энергии в излучении черного тела. Его предсказание совпадает с экспериментальным графиком как в области ультрафиолета, так и в остальных частях спектра. В инфракрасной области формула Планка приводит к традиционным, известным раньше предсказаниям, совпадавшим здесь с экспериментом. Так что это было замечательное предположение для всех областей. Разумеется, оно привело к согласию с экспериментом; в противном случае Планку, как в свое время Кеплеру, пришлось бы выдвигать другие гипотезы. Поразительно, что то же самое правило разрешает и другие, казалось бы, совершенно иные парадоксы.



Фиг. 176. Излучение (факты и теория).


Значение квантовой постоянной h

Универсальная постоянная h в единицах СИ равна 6,62∙10.

Поскольку h = (энергия кванта)/частота, то его размерность дж/сек, или дж∙сек. Таким образом,

h = 6,62.10 дж∙сек.

Планк не угадывал этой величины; она получилась из сравнения с экспериментом. Планк изменял картину излучения от гладкого, непрерывного потока, подобного струе воздуха, до зернистого, подобного струе песка. При большей выбранной величине h и все «песчинки» должны быть большими, а чем больше зернистость, тем больше она ощущалась бы. Если величина h равна нулю, то все «песчинки» слишком малы для проявления, и тогда получается обычное предсказание ультрафиолетовой катастрофы. Если h очень велика, то «песчинки» короткой длины волны должны быть слишком большими, так что их не смогут создать атомы обычной печки, и тогда ультрафиолета вообще не было бы, если только температура не слишком высока. При некоторой промежуточной величине h предсказания прекрасно согласуются с фактами. Подбором получается величина 6,6∙10 дж∙сек.


Величина квантов

Квантовое правило Е = hv расфасовывает зеленый свет по маленьким порциям энергии, величиной около 2,5 эв. У красного света — большая длина волны (меньшая частота) и меньшие кванты, 1,8 эв. Кванты голубого света — большие, 3 эв. Это крошечные порции: посмотрите на зажженную свечу в другом конце комнаты, и в ваш глаз будет попадать в секунду около 10 000 000 000 квантов видимого света. При моментальном снимке в фотоаппарате используется примерно 1 000 000 000 000 квантов. Однако десяток голубых квантов может создать пометку на фотопленке, а человеческий глаз настолько чувствителен к ним, что нервы в его сетчатке реагируют чуть ли не на одиночный квант. Продолжая рассмотрение за границы видимой части спектра, мы обнаруживаем инфракрасное излучение, распределенное по очень малым порциям энергии, и радиоволны в настолько маленьких порциях, что вряд ли можно надеяться непосредственно заметить действие (удары) отдельных квантов — но они ясно обнаружены непрямыми экспериментами, где они переворачивают спин атома.

С другой стороны, ультрафиолетовый свет распространяется большими квантами (что-нибудь около 12 эв), рентгеновские лучи излучаются огромными квантами (такими, как 50 000 эв), а γ-лучи — вообще гигантскими квантами (до 10 эв и больше). Поглощение одного большого кванта может изменить ген наследственности в живой клетке и даже убить клетку.



Фиг. 177. Теория излучения (подгонка теории Планка к экспериментальным фактам выбором h).


Квантовая революция

152