Физика для любознательных. Том 3. Электричество и - Страница 155


К оглавлению

155

...

Задача 3. Фотоэлектрический эффект и квантовая постоянная

Измерения Милликена показаны на фиг. 184 [Physical Review, VII, 362 (1916)]. Оцените с помощью этого графика квантовую постоянную h, если известно, что е = —1,6∙10 кулон. Частота света для различных использованных им цветов дана в герцах и вычислена по отношению скорости света к длине волны, которая в свою очередь измерена с помощью дифракционной решетки. Разность потенциалов, указанная на графике, — это наименьшее тормозящее напряжение, которого достаточно для того, чтобы предотвратить попадание на коллектор электронов, выбитых светом. (При нахождении этой разности потенциалов из измеренных им величин Милликен учитывал «э.д.с. батареи», созданной двумя, различными металлами, которые были использованы в качестве фотоэлектрической поверхности и коллектора, но это не влияет на наклон графика.)



Фиг. 184. Фотоэлектрический эффект: измерения Милликена (к задаче 3).


Соотношение Эйнштейна остается справедливым также для ультрафиолета, рентгеновских и γ-лучей, равно как и для всех веществ. Таким образом, фотоэлектрический эффект ясно обнаруживает квантовые свойства излучения. Видимый свет в лучшем случае лишь слегка щелкает по электронам, ультрафиолетовый свет их выбрасывает, рентгеновские лучи вышвыривают их, а γ-лучи выбивают их прямо-таки, как ударом хлыста. А у γ-лучей очень короткой длины волны кванты настолько велики, что они могут разбить ядро. Вот пример: фоторасщепление дейтрона:



Фактически этот процесс дает хороший способ измерения массы нейтрона. Нужно только найти минимальную энергию, которую должны иметь γ-кванты в этом процессе, и скомбинировать ее с массами водорода и дейтерия, измеренными с помощью масс-спектрографов. Соотношение Эйнштейна применимо также к обратному процессу: быстро движущиеся электроны могут, останавливаясь в мишени, создавать рентгеновские лучи. Чем выше напряжение на пушке, тем больше кинетическая энергия электронов и тем выше максимальная частота образующихся рентгеновских лучей. (Это дает полезное правило, поскольку частота определяет проникающую способность рентгеновского излучения.) Гораздо более медленные электроны могут иногда создавать кванты видимого света, замедляясь при столкновениях.



Фиг. 185. Фоторасщепление дейтрона.


Фотоны

Таким образом, в начале этого века была принята квантовая теория с ее единственным правилом: ЭНЕРГИЯ КВАНТА = h∙ЧАСТОТА. Она успешно объяснила спектр излучения, удельную теплоемкость, фотоэлектрический эффект, образование рентгеновских лучей. Планк показал, что при излучении атомов энергия упакована в кванты. Затем Эйнштейн продвинулся еще дальше, показав, что излучение само по себе должно быть упаковано в кванты.



Фиг. 186. Природа света.


Это было в 1905 г. — в том самом году, когда он опубликовал также свою теорию броуновского движения и выдвинул специальную теорию относительности! Таким образом, квантовая теория с помощью Эйнштейна превратилась из правила упаковки в стройное рассмотрение излучения как малых частиц. Чтобы подчеркнуть представление о частицах, всякий раз, когда имеют в виду корпускулярный аспект в поведении излучения, говорят о фотонах (по аналогии с электронами, нуклонами и т. п.). Все фотоны перемещаются (в вакууме или воздухе) со скоростью света с. Тогда, как следует из релятивистской формулы для массы, они должны иметь нулевую массу покоя. Это не вещество, поскольку их никогда нельзя найти покоящимися. При движении они имеют массу m, такую,

что

ЭНЕРГИЯ, mс = ЭНЕРГИЯ, hv

и

ИМПУЛЬС = mс = ЭНЕРГИЯ/с = hv/с

Таким образом, мы представляем излучение как ведомый волнами, перемещающимися со скоростью света с, поток фотонов, каждый из которых переносит массу, импульс, энергию hv.




Фиг. 187. Природа света.


Столкновения фотонов с электронами. Комптон-эффект

Поскольку фотоны переносят импульс, они должны оказывать давление на поглощающую стенку, а на полностью отражающую стенку — удвоенное давление. Оказывается, это в самом деле так. Измерение очень малого давления пучка света было выполнено и подтвердило выражение для импульса Е/с. Если фотоны представляют собой компактные частицы, обладающие импульсами, то значения этих импульсов должны изменяться при столкновениях с другими частицами, такими, скажем, как электроны. Так и происходит. Фотоны рентгеновского излучения отклоняются при столкновении с электронами, слабо связанными в некоторых атомах, и уходят в новом направлении с меньшей энергией и, стало быть, большей длиной волны. Электроны же отскакивают с соответствующей частью первоначальной энергии фотона, и их короткие следы отдачи можно увидеть в камере Вильсона. Такой «эффект отдачи» открыл А. X. Комптон, и его измерения согласуются с предсказаниями для таких столкновений между «частицами». (Разумеется, для предсказаний нужно использовать релятивистскую механику, поскольку фотоны движутся со скоростью света.) Этот эффект дает одно из лучших доказательств того, что фотоны представляют собой частицы, которые подчиняются механическим законам сохранения и при столкновениях с частицами вещества могут передавать одновременно энергию и импульс.

155