Атом «действия», h
Постоянная Планка h — это универсальная «атомная» постоянная. Подобно скорости света, ее величина не изменяется при преобразованиях теории относительности — она одинакова для всех наблюдателей. Это не атом энергии. Это атом отношения энергия/частота или же произведения энергия∙период, или же произведения энергия∙время, которое называется «действием». Если вы подумаете, то сообразите, что в ньютоновской механике действие имеет вид произведения: сила∙расстояние∙время.
Глядя на это выражение, можно предположить, что такая величина вполне может обладать полезными свойствами. Это в самом деле так. Законы Ньютона и многие другие законы физики можно переформулировать такими словами: «Снаряды, планеты, электроны, световые волны, — все физические объекты выбирают для своего движения такой путь, чтобы действие было или минимально, или максимально, — говоря математическим языком, принимало экстремальное значение. Природа ведет себя так, как будто ей нежелательно, чтобы действии оказалось чуть меньше или больше».
Фиг. 188. Эффект Комптона.
Резерфордовская модель атома имела успех — она способствовала размышлениям и экспериментам, — но парадокс оставался. В атоме вокруг ядра существует поле, убывающее по закону обратных квадратов (что было доказано рассеянием альфа-частиц), а электроны остаются в этом поле далеко от ядра (это также было подтверждено рассеянием альфа-частиц, а позднее спектрами рентгеновских лучей). Поэтому: 1) электроны не могут покоиться в состоянии устойчивого равновесия (теорема Ирншоу). Атомы не разрушаются, излучая при этом электромагнитные волны; следовательно, 2) электроны не могут находиться в движении по эллиптическим кеплеровским орбитам. Утверждения 1) и 2) противоречат друг другу. Далее, иногда атомы излучают; они испускают свет. Световое излучение раскаленного газа расщепляется на очень резко определенные цвета, спектральные «линии» определенной длины волны и частоты колебаний. Частоты излучений возбужденных атомов весьма определенно сгруппированы в несколько серий, характерных для атомов каждого элемента. К 1905 г. были известны общие формулы для спектральных серий, а измеренные частоты некоторых серий расшифрованы с помощью простого закона, для которого теория не могла предложить удовлетворительного объяснения. По-видимому, этот простой закон каким-то образом учитывал квантовые ограничения, поскольку дело касалось фотонов, (Каждая спектральная линия представляет собой свет одного цвета, одной частоты, поэтому она должна представлять собой поток фотонов с одинаковой энергией.) Этот простой закон содержит постоянную, которая оказывается одинаковой для многих спектров. Если бы удалось получить эту универсальную константу спектров, комбинируя другие общие постоянные, такие, как заряд электрона е, скорость света с, постоянная Планка h и т. п. (и подбросив им на помощь числа типа π, 2 или √2), это было бы очень приятным открытием. А если бы при этом еще мощно было привести ясные теоретические аргументы в пользу выбора именно такой комбинации, то это было бы великим открытием. В этом направлении было много попыток и заявлений об успехе — ученые от Пифагора до Кеплера и позже вплоть до нынешних дней искали золотое правило, которое бы объединило вместе наиболее важные числа; результаты этих поисков простирались от бессмыслицы до знаменитых открытий. Бор не только нашел такую комбинацию для постоянной спектра, но и обосновал ее, что принесло ему прочную славу.
Атом Бора. Правила
В 1913 г. смелый и неизвестный молодой датский физик Нильс Бор предложил минимальные изменения классической физики, с помощью которых можно объяснить факты и, комбинируя которые, сделать замечательные предсказания. Обратившись к парадоксу со стабильностью атомов, которые должны были бы быстро коллапсировать, он предложил следующие новые правила:
ПЕРВОЕ ПРАВИЛО. Атомы построены в соответствии с моделью Резерфорда, но электроны движутся по стабильным орбитам без излучения. (Хотя этим заявлением противоречие было только подтверждено, но его ясное признание уже было большим утешением.)
ВТОРОЕ ПРАВИЛО. Разрешены только некоторые орбиты. Эти стабильные орбиты определяются по квантовым правилам следующим образом. У электрона, движущегося по стабильной орбите, действие должно всегда быть равным h, или 2h, или 3h…, nh…. Имеем
ДЕЙСТВИЕ = ЭНЕРГИЯ ∙ ВРЕМЯ,
= [СИЛА ∙ РАССТОЯНИЕ] ∙ ВРЕМЯ,
= [СИЛА ∙ ВРЕМЯ] ∙ РАССТОЯНИЕ,
= ИМПУЛЬС ∙ РАССТОЯНИЕ.
Для круговой орбиты, например, мы смело берем в качестве расстояния длину окружности и пробуем проверить правило:
ИМПУЛЬС ∙ (ДЛИНА ОКРУЖНОСТИ) = h,
или 2h, или 3h…
Вообще, mv∙2πR = nh, где n = 1 соответствует низшей разрешенной орбите, n = 2 — следующей и т. д. Квантовое число n должно быть целым числом.
На модель атома в виде солнечной системы таким образом накладываются жесткие ограничения: разрешены лишь определенные орбиты, а именно только такие, на которых ДЕЙСТВИЕ равно nh, где n — целое число.