б) Если искровой разряд начался, он обычно продолжается, пока источник напряжения в состоянии поддерживать ток. Другими словами, если первая искра проскочила, следующие искры, как кажется, идут по проторенному пути. Объясните это.
в) Если напряжение между шариками настолько велико, что вот-вот может проскочить искра, но еще не проскакивает, туман или пламя спички часто могут вызвать появление искры. Почему?
г) Вместо пламени спички [в задаче в)] маленький кусочек радия, поднесенный к зазору, может вызвать искру. Почему?
д) Предположите, что оба шарика подсоединены к большой емкости. Емкость заряжается, а затем источник заряда отключается еще до начала искры. Искра образуется от зажженной спички. Искра с треском проскочит и иссякнет. Почему искра не будет повторяться в этом случае? (Утверждение «искра вытекла из ионов» не может считаться ответом.)
Фиг. 36Б. К задаче 3,д).
Задача 4
Когда электрический заряд подводится к проводнику неправильной формы, заряд распределяется неравномерно по всей поверхности (см. гл. 33).
а) На какой части поверхности плотность заряда будет больше и соответственно больше напряженность поля у поверхности образца?
б) В счетчике Гейгера одним из электродов является очень тонкая проволока, помещенная в центре трубки. Подумайте над причиной такого конструктивного исполнения.
Задача 5
Как известно, альфа-частицы являются заряженными атомами гелия.
а) Отклонения в магнитном и электрическом полях показывают, что они имеют значения е/М, вдвое меньшие, чем для ионов водорода, «Химические» свойства гелия с очевидностью говорят нам, что масса атомов гелия в 4 раза больше массы атомов водорода. Таким образом, вместо того чтобы говорить, что альфа-частица имеет / (е/М) по сравнению с водородом, мы можем сказать, что она имеет отношение заряда к массе 2е/4m, и считать, что ее заряд равен 2е, удвоенному заряду электрона.
б) Используя счетчик Гейгера, можно сосчитать число альфа-частиц, испускаемых маленьким образцом радия за определенное время.
в) С другой стороны, можно выстрелить таким же потоком альфа-частиц (в вакууме) в маленькую металлическую коробку, собрать заряд за то же время и измерить его (или же измерить ничтожный ток, который будет протекать при соединении коробки с землей).
1) Какую важную часть информации об атомах можно получить, сопоставляя результаты измерений б) и в)? (Заметим, что б) и в) относятся к одинаковому потоку альфа-частиц.)
2) Какую дальнейшую информацию об атомах можно получить, объединяя наблюдение и обсуждение пункта а) с ответом на предыдущий вопрос?
1892 Хотя никто и не может утверждать, что будущее физической науки не содержит в запасе чудес, даже более удивительных, чем прошлое, кажется вероятным, что большинство фундаментальных принципов уже хорошо известно и что дальнейшее развитие будет состоять в корректном применении этих принципов ко всем явлениям, с которыми мы будем сталкиваться…
Один выдающийся физик заметил, что будущие истины физической науки видны в шестом знаке после запятой.
А. А. Майкельсон (Профессор физики, институт Кейса, университет Кларка, Чикагский университет)
1909 Новые открытия, сделанные в физике за последние несколько лет, идеи и возможности, подсказываемые ими, оказали на ученых влияние, подобное воздействию Ренессанса на литературу…
На пути вздымаются еще более высокие вершины, и они покорятся каждому, кто поднимается на них пока еще широкими дорогами…
Дж. Дж. Томсон (Профессор экспериментальной физики Кавендишской лаборатории, Кембриджский университет)
Иногда мирное семейное благополучие нарушается независимыми обстоятельствами, и анализ всех нарушений, вместе взятых, позволяет выявить их причину. Точно так же открытие радиоактивности и связанных с ней рентгеновских лучей, катодных лучей, фотоэлектронов и других ионов возбудило определенные подозрения, а затем привело к познанию внутренней структуры атомов.
Радиоактивность продемонстрировала нам, что из сокровенных глубин атомов выбрасываются их осколки; она показала, что некоторые атомы нестабильны и не сохраняются неизменными. Она выявила родство одних элементов с другими и обнаружила трансмутацию, превращение одного элемента в другой, дала нам в руки снаряды для исследования структуры всех атомов. Более того, экспериментируя с радиоактивными материалами, мы разработали инструменты, получившие широчайшее применение в современной физике: камеру Вильсона, счетчик Гейгера и другие приборы, которые регистрируют отдельные атомные частицы.
Ионизующее излучение
При открытии радиоактивности, незадолго до начала нашего века, интерес был прикован к воздействию излучений на заряженные электроскопы и на фотопленки. Электроскопы теряют свой заряд, когда радиоактивные вещества помещаются вблизи них; а на фотопластинках после проявления возникают темные пятна, как при облучении пластинок светом.
Фиг. 37. Радиоактивность и ионизация.