Когда радиоактивные химические элементы (уран, радий и др.) были выделены, их излучения стали еще сильнее, в некоторых случаях даже окружающий их воздух светился. Ясно — эти вещества излучают что-то, что образует ионы в воздухе или в фотографической эмульсии. Первым проявлением радиоактивности была способность к ионизации. «Количество радиоактивности» измерялось по произведенной ионизации.
Казалось, что ионы производятся чем-то, что испускается непосредственно веществом; эти ионизующие агенты были названы «лучами». (Мы знаем теперь, что лучи образуют ионы, отрывая электроны от атомов на своем пути.)
Опыты с пластинками, поглощающими излучение, указывали на три вида лучей, различающихся по поглощению в веществе:
α) Сильно ионизующие лучи, которые проходили только 2,5–5 см в воздухе по прямой. Эти лучи были названы α-лучами (а впоследствии α-частицами). Лист толстой бумаги задерживал их, но они проходили через папиросную бумагу или через несколько листочков фольги из золота.
β) Лучи, которые проходили большее расстояние; в воздухе ~ 30–50 см, многослойную стопку бумаги, несколько миллиметров легкого металла. Их ионизующее действие ощущалось на расстояниях в воздухе, в десятки раз больших, чем для α-лучей, но их траектория не была столь прямолинейной. Они были названы β-лучами.
γ) Лучи, которые распространялись намного дальше, легко проходили расстояние в воздухе в несколько метров (с ослаблением интенсивности по закону обратных квадратов, вызванным расхождением пучка лучей с увеличением расстояния), расстояние в свинце в несколько сантиметров (с экспоненциальным поглощением; каждый сантиметр свинца «срезает» одинаковую долю интенсивности). Эти лучи, вскоре идентифицированные как электромагнитное излучение, подобное рентгеновскому, были названы γ-лучами.
Узкая трубка с небольшим количеством радия представляла собой «пушку», которая выстреливала пучок лучей. В вакууме все типы лучей распространялись по прямолинейным траекториям на неопределенно большие расстояния.
Сначала были загадочными и природа этих «лучей», и источник их возникновения. Затем тяжелые металлы уран и торий были выделены из руд и было найдено, что лучи исходят от металлов, а не от кислорода, кремния и других элементов, содержащихся в рудах. Эти тяжелые металлы были сильными источниками лучей. Радий, открытый при химической переработке, сильнейший излучатель, оказался еще одним тяжелым металлом.
Лучи и заряды
Электрический заряд, который несут «лучи», был исследован собиранием лучей в металлический стакан в вакууме. Оказалось, что а-частицы несут положительный заряд; β-частицы — отрицательный заряд, γ-лучи не несут заряда.
Отдельные α-частицы могли быть сосчитаны тренированным наблюдателем, замечающим крошечные световые вспышки, которые возникают при столкновении а-частиц с экраном, покрытым минералом. Такие подсчеты дали очень важные сведения об атоме (см. задачу 5, а также гл. 40).
Мы теперь знаем, что эти лучи исходят из самой середины атомов — их ядер. Вы увидите, как эти лучи идентифицируются, измеряются и используются. Но сначала взгляните на действительную картину их полета. Она отображена на изумительных фотографиях, дающих самые наглядные результаты во всей атомной физике. Эти фотографии подобны тем, которые дают присяжным заседателям в суде более ясные показания, чем дюжина устных свидетельств.
Картины в камере Вильсона
Как можем мы сфотографировать полет одиночной атомной частицы, к тому же очень быстрой? Прямая фотография невозможна — частица очень мала и летит слишком быстро. Но мы можем получить картину ее полета, рассматривая разрушения, производимые частицей на своем пути. Вот пример, предложенный профессором Андраде. Выстрелим пушечным ядром вдоль поверхности поля, на котором растет пшеница, и попытаемся сфотографировать его траекторию с самолета. Ядро пролетело до того, как была сделана фотография; после его полета нельзя различить разбитые колосья, но через небольшое время вы сможете сфотографировать темную линию, созданную черными дроздами, слетевшимися клевать упавшие зерна. Лучи от источников радиации оставляют беспорядочные скопления ионов в воздухе, через который они проходят. Следы ионов можно сделать видимыми, если на ионах будут конденсироваться маленькие капельки воды. Возникающую тонкую линию из капелек можно рассмотреть или сфотографировать. Это атомный вариант создания облачного следа, оставляемого в небесах струей газов, выбрасываемых двигателем самолета.
Приспособление для получения видимых траекторий атомных частиц было изобретено и усовершенствовано Ч. Т. Р. Вильсоном. Камера Вильсона позволяет нам видеть и фотографировать пути отдельных частиц, летящих через воздух, — электронов, альфа-частиц или более тяжелых ядер, которые являются составными частями атомов. Мы можем, следовательно, «видеть» отдельные атомные события: столкновения, превращения, взрывы…
Работа камеры Вильсона
Когда вода конденсируется, образуя капли или обыкновенный туман, каждая капля образуется на частице пыли, которая является как бы зародышем. Капли тумана будут вырастать из предельно маленьких капелек, образованных из случайно собравшихся нескольких молекул воды. Подобные комплексы могут чрезвычайно легко испаряться; фактически они никогда не образуются в отсутствие специального инициатора. Большая кривизна поверхности крошечной капли делает испарение очень легким. Маленькие капли не будут образовываться в воздухе, насыщенном водяными парами, но большие капли будут образовываться на больших частичках пыли, покрытых водой. (В масштабе нашего рассмотрения на молекулярном уровне капелька или частица пыли, которая настолько велика, что уже может быть видимой, является большой.)